C-terminal turn stability determines assembly differences between Aβ40 and Aβ42.
نویسندگان
چکیده
Oligomerization of the amyloid β-protein (Aβ) is a seminal event in Alzheimer's disease. Aβ42, which is only two amino acids longer than Aβ40, is particularly pathogenic. Why this is so has not been elucidated fully. We report here results of computational and experimental studies revealing a C-terminal turn at Val36-Gly37 in Aβ42 that is not present in Aβ40. The dihedral angles of residues 36 and 37 in an Ile31-Ala42 peptide were consistent with β-turns, and a β-hairpin-like structure was indeed observed that was stabilized by hydrogen bonds and by hydrophobic interactions between residues 31-35 and residues 38-42. In contrast, Aβ(31-40) mainly existed as a statistical coil. To study the system experimentally, we chemically synthesized Aβ peptides containing amino acid substitutions designed to stabilize or destabilize the hairpin. The triple substitution Gly33Val-Val36Pro-Gly38Val ("VPV") facilitated Aβ42 hexamer and nonamer formation, while inhibiting formation of classical amyloid-type fibrils. These assemblies were as toxic as were assemblies from wild-type Aβ42. When substituted into Aβ40, the VPV substitution caused the peptide to oligomerize similarly to Aβ42. The modified Aβ40 was significantly more toxic than Aβ40. The double substitution d-Pro36-l-Pro37 abolished hexamer and dodecamer formation by Aβ42 and produced an oligomer size distribution similar to that of Aβ40. Our data suggest that the Val36-Gly37 turn could be the sine qua non of Aβ42. If true, this structure would be an exceptionally important therapeutic target.
منابع مشابه
Effect of the English familial disease mutation (H6R) on the monomers and dimers of Aβ40 and Aβ42.
The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer's disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force...
متن کاملMechanism of amyloid β−protein dimerization determined using single−molecule AFM force spectroscopy
Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dr...
متن کاملDifferences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides.
The two major forms of the amyloid-beta (Aβ) peptide found in plaques in patients suffering from Alzheimer's disease, Aβ40 and Aβ42, only differ by two amino acids in the C-terminal region, yet they display markedly different aggregation behavior. The origins of these differences have remained challenging to connect to specific molecular-level processes underlying the aggregation reaction. In t...
متن کاملThe C-Terminal Threonine of Aβ43 Nucleates Toxic Aggregation via Structural and Dynamical Changes in Monomers and Protofibrils
Recent studies suggest that deposition of amyloid β (Aβ) into oligomeric aggregates and fibrils, hallmarks of Alzheimer's disease, may be initiated by the aggregation of Aβ species other than the well-studied 40- and 42-residue forms, Aβ40 and Aβ42, respectively. Here we report on key structural, dynamic, and aggregation kinetic parameters of Aβ43, extended by a single threonine at the C-termin...
متن کاملAmino Acid Position-specific Contributions to Amyloid Β- Protein Oligomerization
Understanding the structural and assembly dynamics of the amyloid β-protein (Aβ) has direct relevance to the development of therapeutic agents for Alzheimer's disease. To elucidate these dynamics, we combined scanning amino acid substitution with a method for quantitative determination of the Aβ oligomer frequency distribution, PhotoInduced Cross-linking of Unmodified Proteins (PICUP), to perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 425 2 شماره
صفحات -
تاریخ انتشار 2013